Sebelum membahas lebih jauh. Kita perkenalkan dulu dengan rumus suku ke-n. untuk menentukan suku ke-n pada barisan segitiga, tentunya kita harus tahu rumus suku ke-n tersebut. Ini bukan hanya pada barisan segitiga, tetapi juga pada barisan-barisan bilangan yang lainnya.
Rumus suku ke-n pada suatu barisan dibedakan menjadi dua macam :
[satu] Rumus Eksplisit
[dua] Rumus Rekursi / Rekursif
Rumus eksplisit misalnya
Rumus rekursi / rekursif misalnya
Rumus eksplisit banyak digunakan pada barisan-barisan aritmetika atau geometri. Rumus rekursi misalnya pada barisan fibonacci. barisan yang sangat terkenal sampai sekarang.
Dari dua contoh tersebut tentunya kita sudah bisa membedakannya.
Rumus suku ke-n untuk barisan segitiga di atas merupakan rumus eksplisit. Nilainya tergantung pada suku yang dicari. Misalnya, untuk mencari suku yang ke-10, maka kita masukkan n=10 ke dalam rumus yang telah kita miliki.
Lalu, bagaimana rumus rekursi untuk barisan segitiga?
Rumus rekursi untuk barisan segitiga adalah
Ini mudah untuk dicari jika kita menggambarkan barisan segitiganya.
Coba perhatikan gambar tersebut!
Suku ke dua sama dengan suku pertama yang ditambahkan dengan dua. Suku ke-3 sama dengan suku kedua yang ditambahkan 3. Demikian juga pada suku ke-4, yaitu sama dengan suku ke-3 ditambah 4.
Bilangan segitiga ke-n akan sama dengan bilangan segitiga sebelumnya yang ditambah dengan n.
Dengan demikian dapat disimpulkan bahwa rumus rekursinya adalah
Beberapa bentuk rumus eksplisit bisa dituliskan menjadi rumus rekursi, tetapi ada juga rumus eksplisit yang tidak bisa dituliskan menjadi rumus rekursi. Pada postingan selanjutnya akan dibahas mengenai cara merubah rumus rekursi menjadi rumus eksplisit untuk suatu barisan.
Sesuai judul kali ini, barisan segitiga atau bilangan segitiga mempunyai
rumus eksplisit yaitu
dan untuk
0 komentar:
Posting Komentar