Senin, 14 November 2011

Barisan Aliquot

Apa itu barisan aliquot? Barisan aliquot adalah suatu barisa dengan suku awal adalah bilangan yang ditentukan dan suku selanjutnya sama dengan hasil penjumlahan faktor-faktor dari bilangan pada suku sebelumnya (tanpa dirinya sendiri). Untuk lebih mudah memahami, perhatikan contoh berikut :


10 mempunyai faktor-faktor (tanpa dirinya sendiri) adalah 1, 2 dan 5. Jika dijumlah hasilnya 8.
8 mempunyai faktor-faktor (tanpa dirinya sendiri) adalah 1, 2 dan 4. Jika dijumlah hasilnya 7.
7 mempunyai faktor-faktor (tanpa dirinya sendiri) adalah 1. Jika dijumlah hasilnya 1.
Barisannya yaitu [10, 8, 7, 1]





Contoh yang lain dan silahkan dicoba untuk dihitung. [24, 36, 55, 17, 1]


Apakah selalu berujung di 1?


Tidak. karena untuk suatu bilangan sempurna akan selalu kembali ke dirinya. Misalnya 28,
28 mempunyai faktor-faktor (tanpa dirinya sendiri) adalah 1, 2, 4, 7 dan 14. Jika dijumlah hasilnya 28.


Itulah istimewanya bilangan sempurna. Jika dituliskan dalam barisan aliquot, bilangan sempurna hanya mempunyai 1 suku yaitu dirinya sendiri. Inuk kan bilangan sempurna itu.


Ada juga yang berputar (looping). yaitu terdapat pada bilangan yang bersahabat. Misalnya 284,
284 mempunyai faktor-faktor (tanpa dirinya sendiri) adalah 1, 2, 4, 71 dan 142. Jika dijumlah hasilnya 220.
220 mempunyai faktor-faktor (tanpa dirinya sendiri) adalah 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 dan 110. Jika dijumlah hasilnya 284.


Jika dituliskan dalam barisan aliquot akan terus berulangan beberapa sukunya, misalnya contoh tersebut yaitu : [284, 220, 284, 220, 284, 220, …]




Konjekture mengatakan bahwa barisan aliquot tidak akan menuju ke tak hingga.
Hanya ada 3 kemungkinan,
*Menuju ke angka 1
*Looping (berputar kembali ke dirinya sendiri).
*Sempurna (sama dengan bilangannya sendiri)


Contoh berikut adalah suatu bilangan yang dibuat barisan aliquot yang berputar. Dimulai dengan bilangan 14316, yaitu


[14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716, 14316, …]


Perhatikan yang terakhir, sama dengan yang awal. Untuk suatu bilangan asli yang kurang dari 2000, ada beberapa yang masih belum dicheck (mungkin saat ini sudah ditemukan), apakah bilangan-bilangan berikut ini termasuk looping atau menuju ke 1. Bilangan-bilangan itu antara lain :


276, 552, 564, 660, 966, 1074, 1134, 1464, 1476, 1488, 1512, 1560, 1578, 1632, 1734, 1920 dan 1992


D. N. lehmer menunjukkan bahwa untuk bilangan 138 akan menuju ke 1. Dan ini membutuhkan 177 langkah.


Wolfgang Creyanfmueller pada tahun 2002 menunjukkan bahwa untuk bilangan 446580 akan menuju ke 1 setelah melalui 4736 langkah.


Manuel Benito dan Juan Verona menunjukkan bahwa bilangan 3630 akan menuju ke 1 setelah melalui 2624 langkah. Dan bilangan yang ada di dalam barisan itu ada yang sampai pada 100 digit.

0 komentar:

Posting Komentar